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BASIC EQUATIONS

The electromotance or voltage ε (−∇ε = E, the electric field
intensity) in Volts induced in a circuit equals the rate of change of
flux N in Wbs-1:

ε = dN
dt

i.e.

E ⋅dll∫ = − d
dt

B⋅ndSS∫

for any path l, with n the normal to a two sided surface S.

Surface  S

Contour l

Coil

leads

voltage 
produced
across 
leads

Figure.  The contour l and surface S of a pick-up coil.

To obtain the required B the coil output signal must be integrated.
This is performed passively with a resistance-capacitance circuit,
with active integrators, or numerically on a computer after
digitizing the data.
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Integration

The time integration required to obtain the magnetic field B from the pick-up coil output ε can be

performed either digitally or by an analog circuit.

εin
ε
out

Ω

C

Figure.  A passive “ΩC” integration circuit.

The simplest thing to do is to use a capacitor (C) and resistor (Ω) network, as shown in Figure.

The output voltage is given by

dεout

dt
+

εout

τ
=

εin

τ

with τ = ΩC called the integrator time constant.  The solution to this equation is

εout = e
− t

τ e
−t'

τ 
 
  

 
εin (t' )

dt'

τ
0

t

∫

For example, suppose at t = 0 we start an input voltage εin = εin0 sin(ωt), so that the required

integral is εint = εin0 (1-cos(ωt))/ω.  The output from the passive circuit is (obtained using

Laplace transforms)

εout = εin0
ωτ

e
t
τ 1 + ωτ( )2( )

+
sin(ωt) −ωτ cos(ωt)

1 + ωτ( )2( )
 

 

 
 

 

 
 
 

Now consider two extremes.  First, if ωτ >> 1 and t << τ we have

εout =
εin0

ωτ
1− cos(ωt)( )

That is, εout  = 1/τ times the required integral.  In this limit we have integrated the input signal.

If ωτ << 1 and t >> τ, then εout = εin.
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As an example, we show in Figure the output from the passive integrator (“integrator output”,

dotted line) for a sinusoidal voltage input of 1V at a frequency of 100 Hz (“coil input”, solid

line), with an integrator time τ = 0.1s.  The exact integral (“field”) divided by τ is shown as the

broken line.  The integral is only performed accurately for times t << τ; as the pulse proceeds

there is a “droop”, and significant errors result.  We can imagine the curve “field” represents a

specified magnetic field time history B = B0(1-cos(ωt))/(ωτ), with B0 = τ/(nA) T, and B/τ is

plotted.  The curve “coil output” represents the non-integrated output from a magnetic pick-up

coil with area nA m2, (n turns each of area A), which becomes the input voltage to a passive

integrator εin = sin(ωt).  Finally the curve “integrator output” represents the output from the

passive integrator, which we would interpret as the original magnetic field.

A common situation is that the required signal from the pick-up coil has a low frequency

component of angular frequency ω0, and superimposed upon this is a higher frequency unwanted

“noise” signal of angular frequency ω1.  By carefully choosing the time constant τ of our passive

integrator so that ω0τ << 1 (εout = εin) but ω1τ >> 1 (integration) we filter the noise, leaving the

required slowly time varying voltage.  As an example, Figure shows the passive integrator output

εout (dashed line) for an input voltage εin (solid line) comprising a slow (ω0 = 10 rs-1, εin0 = 1 V)

and fast (ω1 = 2x103 rs-1, εin1 = 0.2 V) component.  The time constant τ = 0.01 s, so that ω0τ =

0.1 (<< 1) and ω1τ = 100 (>> 1).  The output voltage is filtered, as required.  The dashed line

shows the exact integral divided by τ, for comparison.

(V)

Figure.  The input (“coil input”, solid line) sinusoidal voltage with f = 100 Hz and output
(“integrator output”, dotted line) of a passive integrator circuit with τ =  ΩC = 0.1 s.  The (exact
integral)/τ is denoted by “field”, the broken line.
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 time (s)

input

(exact 
integral)/τ

output

V

Figure  The output of a passive integrator circuit used as a filter.  An input voltage (solid line)
with summed sinusoidal voltages is smoothed to give the dash-dot line.  The exact integral
divided by τ = ΩC is shown as the dashed line.

A more common system to perform the time integration is an active integrator, but in many cases

an input filter consisting of a passive integrator is still used.  Active integration is performed

using a circuit such as shown in Figure; the output voltage εout =
1

ΩC
ε indt

t1

t

∫ .  The example

shown grounds one side of the coil.  A useful feature shown is the integrator gate, which defines

the time t1 the integration starts.  On tokamaks this gate is often used to help reduce errors from

misaligned pick-up coils.  For example, tokamaks have a large toroidal field and a much smaller

poloidal field.  Therefore if the pick-up coil used to measure the poloidal field is misaligned even

by a small amount, the resulting component of the toroidal field which is picked up (as dB/dt)

can be significant.  However the toroidal field usually evolves on a much slower time scale than

the poloidal field, and in fact it is usually time independent at the time the poloidal field is

initiated.  Therefore the integrator gate can be opened when the toroidal field is time

independent, and therefore the induced voltage in the misaligned pick-up coil is independent of

the toroidal field.

Integrator gate

inε εout

Ω C

.

Figure.  An active integrator circuit.

If the data is digitized, integration can be performed numerically.  Sufficiently fast systems now

exist for “real time” integration; the integration can be performed in µs so that integrated signals
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suitable for real time feedback control can be obtained.  A p bit digitizer has a resolution of 1

part in 10p, e.g. an 8 bit system has a resolution of 1 in 256, while a 10 bit system has a

resolution of 1 part in 1024.  This can be a limitation if we intend to investigate large but low

frequency magnetic fields in the presence of small, high frequency fields.  An example is that of

trying to measure the equilibrium poloidal field in the presence of Mirnov oscillations.  The

pick-up coil output is dominated by the voltage produced by the time derivative of the small but

high frequency component.  Avoiding saturating the input by the higher voltage, high frequency

component means that the resolution of the low frequency fields is now restricted.  If we want to

use the full capability of the digitizer in recording the lower frequency fields, then the solution is

to filter the signal and only allow frequencies below a certain value to be recorded, i.e. use the

analog filters described above.

Intuition suggests that if a time varying wave form is sampled sufficiently fast then the original

wave form can be recovered.  However, we must determine how close the samples must be, and

how to interpolate between adjacent points.  The sampling theorem provides answers to these

questions.  An original signal x(t) can be recovered from sample values x(nts), with ts the sample

time, by locating sinc functions at nts with amplitudes x(nts).  The signal x(t) can only be

recovered if the signal bandwidth b ≤ f s/2, with fs the sampling frequency = 1/ts.  If this is not

done, aliasing occurs.

If b > fs/2 then the high frequency signal can appear as a low frequency signal.  The fact that

spoked wheels in films sometimes appear to rotate backwards is a manifestation of aliasing.

Aliasing can be avoided using a passive filter to remove the high frequencies f > fs/2.  For

example, sampling at 5 kHz (i.e. a sample every 0.2 ms) then an “anti aliasing” filter with τ = 0.5

ms can be used.
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ALTERNATE MEASUREMENT TECHNIQUES

Other techniques (than pick-up coils) are used to measure magnetic fields.  The most common

alternative is a Hall probe, shown in Figure  A semiconductor is placed in a field B, and a

current I driven perpendicular to B.  The current carriers experience a Lorentz force, producing a

charge build up in the direction perpendicular to both B and I.  The resulting charge build up

produces an electric field which cancels the magnetic force.  This electric field is measured by

electrodes.  Discovered in 1879 in Johns Hopkin University.

B

j

E+ + + + + + +

- - -
- - - -

Drive j.  Charge build 
up perpendicular to B 
and j.  Measure E.

-

j

Figure.  A Hall probe.

Assume electrons move inside flat conductive strip in B field.  Then

VH = hiBsin α( )
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i is current, h is efficiency which depends on geometry, temperature, area.  Theoretically the

overall efficiency depends on the Hall coefficient, the transverse electric potential gradient per

unit B field per unit current density.

Problems:  susceptibility to mechanical stress, and temperature (of resistors).

Faraday Effect

It has also been proposed to use the magneto-optic effect (the Faraday effect) in fused silica

single mode optical fibers to measure magnetic fields, and the electro-optic (Kerr) effect to

measure electric fields.  The Faraday effect is the consequence of circular birefringence caused

by a longitudinal magnetic field.  Circular birefringence causes a rotation F of the plane of

linearly polarized light, given by

F = Vc H • dl
l
∫

around a contour l.  No time integration is required.  The Verdet constant Vc ≈ 5x10-6 radA-1 for

silica.  Thus the rotation must be now measured.

Another approach is to coat a fiber with magnetostrictive material and measure the strain effects,

with the fiber as one arm of a Mach Zender interferometer.

 The Compass.

Chinese 2634 BC, magnetite suspended on silk.

Flux gates

Intended for weak fields.  See B-H curve below.
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An applied field H to the core induces a magnetic flux B = mH.  For high B the material saturates

and µ is very small.  There is hysterisis, and the path is different for increasing and decreasing H.

When the core is not saturated the core acts as a low impedance path to lines of magnetic flux in

the surrounding space.  When the core is saturated the magnetic field lines are no more affected

by the core.  Each time the core passes from saturated to unsaturated and backwards, there is a

change to the magnetic field lines.  A pickup coil around the core will generate a spike.  Flux

lines drawn out of core implies positive spike, lines drawn into core, a negative spike.

Amplitude of spike proportional to intensity of flux vector parallel to the sensing coil.  Pulse

polarity gives direction.

Core must be driven in and out of saturation by a second coil.  The excitation current will

induce a corresponding current in the sensor coil, but this can be allowed for.

A better approach: position excitation coil so that it will excite without affecting sensor coil.  i.e.

excite flux at right angles to axis of sensor coil.  Use toroidal core with drive winding and a

cylindrical sensor coil..
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EXPERIMENTAL TECHNIQUES

Coils winding

The rogowski coil is simply made by obtaining a delay cable, and returning the wire down the

center of the delay line (to ensure no net single turn is left).  More complicated coils must be

made by using variable winding densities (i.e. changing the pitch) or varying the cross sectional

area of the former on which the coil is wound.

Interference suppression

Electrical equipment designed to produced RF energy such as generators, and switching

phenomena in electrical circuits, create RF spectra which must be contended with.
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interference

propagationlines
dc coupled

radiation
capacitive coupling
(inductive coupling)

suppression

line
attenuation

components
capacitiors
inductors
filters

decoupling 
attenuation

screening
screen devices
screen lines
line arrangement

sensor
coil

Figure.  An illustration of interference paths and suppression techniques.

The sources of interference are illustrated in Figure.  The interference propagates either down

lines (cables) or by direct radiation.  If the wavelength is large compared to the dimensions of the

interference source only minor radiation will result, which is mostly found along the lines.  This

is the case for frequencies up to 30 MHz.  When the dimension of the interference source is

about that of the wavelength the interference energy will travel by radiation.  The dominant

frequencies are those where the interference source are l/4 or multiples of it.  Favorable radiation

conditions imply reduced line propagation (because of increased line attenuation) . Therefore the

two propagation paths, comprising direct and capacitive or inductive coupling, suggest two

means of suppression, either line attenuation or de-coupling attenuation.  Line attenuation is

effected by filters.  De-coupling attenuation is effected by the construction of the sensor coil and

the associated connecting lines.
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A common problem with probes is capacitive pick-up.  To test for this pick up on simple sensor

coils, two identical and adjacent coils can be connected in series.  Depending on the orientation,

the signal obtained should be twice that measured with a single coil, or zero.  If the coils

connected in opposition do not give a zero signal, then capacitive coupling effects should be

considered as a possible source of error.  Capacitive coupling can be over using a grounded

screen or can around the sensor.

Screened rooms

The requirement is to screen a room in which a sensitive measurement is being performed

from external interference, or to accommodate apparatus which radiate interference in a screened

room to keep the surroundings free from interference.  The basic method is to use cages of wire

mesh, or metal sheet.  Both electric and magnetic field components must be considered.  Units

used for effectiveness are the decibel :

s = 20log
E , Bnoscreen

E, Bwithscreen

 

 
 

 

 
 

and the Napier

s = ln
E , Bnoscreen

E, Bwithscreen

 

 
 

 

 
 

The wire mesh works to screen electric fields because the external flux lines mainly end on the

mesh.  The effectiveness depends primarily on the size and type of the mesh.  Magnetic

screening is effected by induced currents; DC magnetic fields are not screened, and low

frequency AC magnetic fields are only poorly screened by non magnetic materials.  With

increasing frequency the magnetic shielding improves and approaches a finite value.  Double

screens, insulated from each other except at one point, improve the screening.  These rooms work

well to 20 MHz.  Above this the screen room size can equal the cage dimension, causing

resonances.

Sheet metal rooms have better screening properties than double walled wire mesh, but breathing

is a problem.  The screening against electric fields is ideal since no flux can penetrate.  The

screening of the magnetic component improves with increasing frequency due to the skin effect.

Honeycomb inserts are also used.  The grids are wave guides (with the frequencies considered

below cut-off), the screening effectiveness of which depends on the ratio of depth to width of the

honeycomb up to cm wavelengths.  They are used for 100 kHz < f < 1000 MHz.
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Misaligned sensor coils

Typical tokamak requirements include the measurement of poloidal fields in the presence of a

much larger toroidal field.  A small misalignment of the coil will then introduce unwanted field

components.  There are a number of solution to overcoming this problem

a) subtract data obtained with only the (unwanted) field component by energizing only

the offending windings

b) make use of the differential nature of a pick-up coil signal.  For example, consider the

toroidal field to be the offending field, so that the pick-up coil measures 
dB

dt
=

dBpoloidal

dt
+

dBtoroidal

dt
.

If the toroidal field is almost steady state (d/dt ≈ 0) during the times of interest, then the differential

signal during this time is approximately that required (i.e. from the poloidal field component only).

Therefore the temporal integration should be started as late as possible. 
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PLASMA CURRENT (The Rogowski coil)

The transient plasma current generates a voltage ε in a coil of
uniform winding density of n turns per unit length and area A:

ε = nAAµ0
dI
dt

from which Ip is deduced after signal integration.

Note a center return should be used to avoid unwanted induced
voltages from for example a changing toroidal field.

Figure 2a.  A Rogowski coil

Ip

Rogowski

Volts

Volts

Figure 2b. Coil placement

plasma
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LOOP VOLTS, VOLTS PER TURN, SURFACE VOLTS

Measure ε = 2πREφ = dΨ/dt around the plasma on contour l (e.g.
vessel).  Poynting's theorem for the poloidal fields alone: ∇× B = µj ,
∇× E = −

∂B
∂t

, multiplying these by -E and B/µ, add, and write
poloidal component:

∂
∂t

Bp
2

2µ0

 

 

 
  

 

 

 
  

+∇• E×
Bp
µ0

 

 
  

 

 
  + jφ Eφ = 0

Integrating over the volume V defined by rotating the contour l around φ:

∂
∂t

LiIp
2

2

 

 

 
  

 

 

 
  

+ jφ EφdV = εBτ dl
l
∫

V
∫

(using ∇• E × Bp( )dV =
V
∫ Eφ × Bp( )• dSφ =

S
∫ 2πREφ Bpdl

S
∫ )

Li is defined by (LiIp2)/2 = ∫(Bp2/(2µ0)dV, i.e. Li ≠ li.

Ohms law j.B = σ||E.B, assume |Bφ0-Bφ| << Bφ0 so that Eφ = jφ/σ||, gives

∂
∂t

LiIp
2

2

 

 

 
  

 

 

 
  

+
jφ
2

σ||
dV = Ip

V
∫ ε

ε = 1
µ0Ip

εBτ dl
l
∫

p 3.15



plasma sensors chapter 3 August 3, 1997

For example, suppose the contour is a circle of radius al, and

ε = ε0 1+ εn cos nω( )
n
∑

 

 
 
 

 

 
 
 

Bτ =
µ0Ip
2πal

1+ λn cos nω( )
n
∑

 

 
 
 

 

 
 
 

Then  ε = ε0 1+ λnεn
n
∑

 

 
  

 

 
  

Li for a "straight" circular tokamak, radius ap and contour radius al is

Li ≈ µ0Rp ln
al
ap

 

 
  

 

 
  +

li
2

 

 
 
 

 

 
 
 ,

µ0li/(4π) is the inductance per unit toroidal length inside the plasma.

plasma

volts per turn 

contour
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DEDUCTIONS FROM LOOP VOLTS

Average plasma conductivity <σ>:

2πRpIp
2

πap
2 σ

=
jφ
2

σ ||V
∫ dV = Ip ε − ∂

∂t

LiI p
2

2

 

 

 
 

 

 

 
 

Conductivity temperature Tσ:

The Spitzer conductivity is

σ = 1.9 ×104 Te
3

2

Zeff ln Λ s( )
Then Tσ is defined as that temperature which gives a Spitzer conductivity (with Zeff
= 1) equal to the average conductivity <σ>.

Average “skin time”:

τskin =
πµ0σap

2

16

Energy confinement time τE

τ E = W

Poh
=

3µ0β I Rp
8Ωp

=
3µ0β Iap

2 σ
16

τ E
τskin

≈ βI
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CIRCULAR LOW β LARGE R/a EQUILIBRIUM

Use the coordinate system (ρ,ω,−φ) based on a circular contour
centered at Rl.

 
Z

Z

R
φ R

ω
ρ

R l

vessel vessel

plasma

∆ g

Center of outermost plasma flux surface (the geometric center) is
at Rl+∆g.  For ρ > ap, the plasma minor radius, and taking ∆g/ap
<< 1, we obtain:

  

Ψ
2π

=
µ0RlIp

2π
ln

8Rl
ρ

 
   

  − 2
 
   

  −
µ0ρI p

4π
1 −

a p
2

ρ 2

 

 
  

 

 
  Λ + 1

2( ) + ln
ρ

a p

 

 
 

 

 
 −

2Rl∆g

ρ 2

 

 
 
 

 

 
 
 
cos ω( )

  

Bω (ρ,ω) = −
µ0I p
2πρ

−
µ0I p
4πRl

1 +
ap

2

ρ 2

 

 
 
 

 

 
 
 Λ + 1

2
 
 
  

 
 + ln

ρ
a p

 

 
  

 

 
  −1 +

2 Rl∆ g

ρ2

 

 

 
 

 

 

 
 
cos ω( )

  

Bρ (ρ,ω) = −
µ0 I p
4πRl

1 −
a p

2

ρ 2

 

 
 
 

 

 
 
 Λ+ 1

2
 
 
  

 
 + ln

ρ
ap

 

 
  

 

 
  −

2Rl∆ g

ρ2

 

 

 
 

 

 

 
 
sin ω( )

Λ = β I + li
2

−1
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Figure.  Flux contours for a (badly drawn) circular plasma with geometric center 0.06 m outside
the coordinate center, minor radius 0.265m, Λ = 2.

from external 
sources

total external 
flux

plasma 
contribution

plasma
edge

Figure.  The external poloidal flux ψ =Ψ/(2π) in the plane z = 0 for a plasma with minor radius
ap = 0.2m, a major geometric radius Rg = 1m, current I = 1/µ0, and Λ = 2.
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Br (T)

θ (rad)

outside

top

inside

bottom

B  (T)
θ

θ (rad)
outside

top

inside

Figure. The field components Br and Bθ on a contour with minor radius 0.3m placed outside and
concentric with the plasma described in previous Figure.
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POSITION AND βI + li/2 FOR A CIRCULAR EQUILIBRIUM

Bω and saddle coils

Saddle
Coil

ω1

ω2

Figure 4a. Saddle and Bω coils

R-b

R+bΨ

Ψ

plasma

B

B

Figure 4b. A plan view of poloidal flux loops

1

2

  
B⊥ =

Ψ1 − Ψ2
4πRlb

=
ψ1 −ψ2

2Rlb

  

Bω 2 − Bω1

2
+ B⊥ =

µ0 Ip

2πRl
ln

b

ap

 

 
 

 

 
 + βl +

li
2

−1
 

 
 

 

 
 

  

∆g

b
= b

2Rl

ap
2

b2

 

 
 

 

 
 ln

b

ap

 

 
 

 

 
 + 0.5 1−

ap
2

b2

 

 
 

 

 
 

 

 
 

 

 
 

+
πb

µ0Ip

Bω2 − Bω1( )
2

1−
ap

2

b2

 

 
 

 

 
 − B⊥ 1+

ap
2

b2

 

 
 

 

 
 

 

 
 

 

 
 

Iterate to obtain ∆g and ap, and Λ = βI + li/2-1.
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MODIFIED ROGOWSKI AND SADDLE COILS (FIELD
CHARACTERIZATION)

We characterize the tangential (subscript τ) and normal (subscript
n) fields on a circular contour of radius al using a Fourier series:

Bω = Bτ = µ0 I

2πal
1+ λn cos nω( ) + δn sin(nω )

n
∑

 

 
 
 

 

 
 
 

Bρ = Bn = µ0 I

2πal
κ n cos nω( ) + µn sin(nω)

n
∑

 

 
 
 

 

 
 
 

A modified Rogowski coil (nA ∝ cos(ω)) can be used to measure
the part of Bω(ρ,ω) proportional to cos(ω), and a saddle coil
(width ∝ sin(ω)) used to measure that part of Bρ(ρ,ω)
proportional to sin(ω).
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We can measure the components either by performing a Fourier analysis of the data from a set of

individual coils measuring Bn(ω), Bτ(ω), or we can construct integral coils which will do the job

directly.  For example, a "modified Rogowski coil", or “cosine coil”, whose winding density

(number of turns per unit length) nA = n0cos(nω), each turn of area A, will give a signal which,

when time integrated, is proportional only to λn:

ε =−
d

dt
B •nSdS( )

S
∫ =−

d

dt
Bω (ω )nA (ω )al Adω( )

0

2π

∫
 
 
 

 
 
 

= −
µ 0 An0

2π
d

dt
I cos(nω ) 1 + λ n sin(nω ) + µ n cos(nω )

n
∑ 

 
  

 
 

  
 

  
0

2π

∫ dω
 
 
 

 
 
 

= − µ 0 An0

2

d

dt
Iλn{ }

The elemental area dS = nAAdl, the unit length dl = aldω, and ns is the unit normal to the coil

area.  That is, the only contribution to the space integral comes from the term cos2(nω), because

∫
0

2π
cos(nω)cos(mω)dω = π if m = n, otherwise = 0.  If the winding density is proportional to

sin(nω), the time integrated output is proportional to δn.  To obtain the coefficients µn and κn, we

must wind a “saddle coil” with nw turns of width w varying as sin(nω) or cos(nω), so that for a

”sin” saddle coil w(ω) = w0 cos(ω), and

ε =− d
dt

B(ω )nw w(ω )aldω( )∫
 
 
 

 
 
 

= −
µ 0w0nw

2
d
dt

Iµ n{ }

In this case the elemental area dS = nwwdl = nwwaldω, the time integrated output provides the

coefficient µ.  Figure shows a cosine coil which measures λ1.  Although it is not illustrated, a

center return wound inside the Rogowski coil should be used.  Figure shows an unfolded “sin

saddle coil” measuring µ1.  Of course, we cold also use an array of coils placed on a contour,

measuring independent Bτ and Bn at different positions (different ω) and construct the required

integrals.
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From these two coils we can obtain the two unknowns Λ and ∆g,
assuming ap.

Iterate to obtain Λ, ∆g and ap.

 A modified Rogowski coil . A saddle coil

pitch changes 
sign

'width' changes 
sign

p
pI

I
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MOMENTS OF THE TOROIDAL CURRENT DENSITY

Let fields q and g satisfy the equation

1

µ
∇ × q( ) = ∇ g

µ
 

 
 

 

 
 ,

so that

∇ × ∇ × q( ) = 0 .

Then

q • jdV
V
∫ = q. ∇ × B

µ
 

 
 

 

 
 

V
∫ dV

= ∇ • B
µ

× q
 

 
 

 

 
 + B

µ
• ∇ × q( )

 

 
 

 

 
 

V
∫ dV

= ∇• B
µ

× q
 

 
 

 

 
 + B •∇ g

µ
 

 
 

 

 
 

 

 
 

 

 
 

V
∫ dV

= B
µ

× q
 

 
 

 

 
 • n + g

µ
 

 
 

 

 
 B • n

 

 
 

 

 
 

Sn
∫ dSn

This has not invoked axisymmetry.  Now let q = f∇φ (which has
a component only in the f direction, q = f/R) and consider
uniform permeability µ0.
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Then we can write an expression for the "multipole moment"
Ym of the toroidal current density

Ym = 1

I p
fm jφ dSφ

Sφ
∫ = 1

µ0 I p
fm Bτ + RgmBn( )

l
∫ dl

where, from

1

µ
∇ × q( ) = 1

µ
∇ × f

R
eφ

 
  

 
  = ∇ g

µ
 

 
 

 

 
 ,

fm and gm are various solutions of

∂g

∂R
= − 1

R

∂f

∂z

∂g

∂z
= 1

R

∂f

∂R

Remember that  ∇x(∇xq) = 0, with q = f∇φ = e φf/R, so the
equation for f is

∂2 f

∂R2 − 1

R

∂f

∂R
+ ∂2 f

∂z2 = 0

That is, f is a solution of the homogeneous equilibrium equation
and g is a solution of Laplace's equation.  Of course, the trick is
to find useful expressions for fm (equivalent to Θm) and gm. 
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An important point about the method of multipole moments is
that the results obtained are sensitive only to currents flowing
within the contour l (including vacuum vessel currents if the
measurements are made outside this).  Thus either the total
equilibrium fields, or just the plasma fields, can be used.  The
plasma fields can be calculated if external conductor currents are
known.  Using just the plasma fields alone may have advantages
in terms of requiring fewer moments to accurately describe the
data.

symmetric asymmetric

f0 = 1 f0 = 0

g0 = 0 g0 = −1

f1 = x 1+ x

2Rc

 

 
 

 

 
 f1 = z 1+ x

Rc

 

 
 

 

 
 

2

g1 = z
Rc

g1 = − x
Rc

1 + x
2Rc

 

 
 

 

 
 + z2

Rc
2
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Rectangular geometry:

Z

R

η z

x

Rl

ξ

Rc

∆R

z∆

Relate plasma (∫dSφ) coordinates to fixed (∫dl) coordinates
through a plasma displacement ∆R, ∆z:

ξ = x +∆R, η = z + ∆z, Rc = Rl + ∆R, R = Rc+ x = Rl + ξ.
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PLASMA POSITION

Define the current center to make Y1 = 0:

  

ξ − ∆R + ξ − ∆R( )2

2Rc

 

 
  

 

 
  Bτ + Rl + ξ

Rc
ηBn

 

 
 
 

 

 
 
 
dl

l
∫

− Rl + ξ
Rc

∆ zBn

 

 
 

 

 
 dl

l
∫ = 0

i.e. the current channel displacement is:

  
∆ R = ∆R0 + ∆R1 −

∆R0
2

2Rl

  
∆ R0 = 1

µ0 Ip
ξBτ + ηBn( )

l
∫ dl

 

 
 
 

 

 
 
 

  
∆ R1 = 1

µ0 Ip

ξ2

2Rl
Bτ + ηξ

Rl
Bn

 

 
 
 

 

 
 
 

l
∫ dl

 

 
 
 

 

 
 
 

Therefore the position is measured with a "modified Rogowski
coil" whose winding density times cross sectional area varies as ξ
+[ξ2/(2Rl)], and a saddle coil whose width varies as η+[ηξ/Rl].

Alternatively the integrals can be constructed from discrete local
measurements.
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Circular geometry (ξ = alcos(ω), η = alsin(ω), neglecting ξ/Rl,
then first coil is a "cos Rogowski", second term is a "sin saddle".
i.e. position given by Fourier components

  

∆ R ≈ al
2

λ1 + µ1( ) +

al
2

4Rl
1+ λ2

2
+ µ2

 
  

 
  −

al
2

8Rl
λ1 + µ1( )2
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PLASMA SHAPE

Using higher order moments we can obtain information on the
plasma shape.  For example, Y2 determines ellipticity and Y3
determines triangularity.

That is, with the Rogowski coil measuring Ip and either modified
Rogowski and saddle coils, or single point measurements of Bn
and Bτ suitably combined, we can construct Y2.

If we want to use modified Rogowski and saddle coils, then to
obtain Ip, ∆R and Y2 takes a total of 5 coils.

For a circular contour, and ignoring toroidal effects,

  
Y2 = −∆ R

2 + ∆z
2 +

al
2

2
λ2 + µ2( )

To interpret the moments it is necessary to assume a plasma
current distribution; because the moment is an integral of the
current density over the surface Sφ, there is no unique solution for
the boundary shape.  e.g., consider a uniform current density and
a surface described by an ellipse with minor and major half width
and half height a and b.  Then

Y2 ≈ − ka2

2
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βI + li/2

Other integral relationships including the constraint of
equilibrium have been obtained:

βI +
Lp
2

= s1
2

+ s2

s1 = 2π
µ0

2RchIp
2 Bτ

2 − Bn
2( )ρn• eρ − 2Bτ Bnρτ • eρ[ ]Rdl

l
∫

s2 = 2π
µ0

2 Ip
2 Bτ

2 − Bn
2( )n • eς − 2Bτ Bnτ •eς[ ]Rdl

l
∫

ρ = [(R-Rl)2+z2]1/2 is distance from Rl to the contour, ξ = R -
Rl.

If contour is plasma surface (see 'fast reconstruction') then Li = li,
Bn = 0, and equations for s1 and s2 are simplified.

s1 = 1 for a circular discharge.

Because relationships involve squares of fields, we cannot design
modified Rogowski and saddle coils to make the measurements.
Instead we measure Bn and Bτ at discrete points along the
contour, and then construct the required integrals.  For circular
plasma inside circular contour,

βI +
Lp
2

= 1+ Rl
al

λ1 + µ1( )
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SEPARATION OF βI AND li

For non circular plasmas there is another integral relationship,
which provides the parameter ∫V(2p+Bz2/µ0)dV in terms of a

measurable contour integral.  If the volume averages <Bz2> and
<Bp2> are different, as is the case for non circular discharges,
then this measurement allows the required separation.

For near circular plasmas, we must estimate Li separately.  For
example, for the simple circular low beta equilibrium we can take
a model current distribution

jφ0(r) = j0(1-(r/a)2)α

Then li = Li-ln(al/ap), with li given as a function of α = (qa/q0
-1).  By assuming q0 = 1 we can then estimate li, and make the
separation.

Or we can make a diamagnetic measurement.
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DIAMAGNETISM

During formation inside a magnetic field the plasma particles
acquire a magnetic moment m:

m = Areaorbit Iorbit = π v

ω
 
  

 
  

2 qω
2π

 
  

 
  

Since ω = qB/me, we have

m = mev2

2B

adding up to a total magnetic moment 

M = nmSφ

per unit length of column with cross section Sφ and a number
density of n   Supposing cylindrical geometry the elementary
currents cancel within the homogeneous column, leaving only an
azimuthal surface "magnetization' current density js:

js = nm = nkbT

B
= p⊥

B

where p⊥ = nkb(Te + Ti)⊥, kb is Boltzmann’s constant.  The
toroidal field will be modified.
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The associated flux from this surface current can be calculated:

∆Φ = πap
2∆Bφ = πap

2 µ0
2πR

I = πap
2 µ0

2πR
2πRjs

= πap
2 µ0

2πR
2πR

p⊥
Bφ

= πap
2 µ0

p⊥
Bφ

Using the definition of βI, we then have

∆Φ =
µ0

2 Ip
2βI

8πBφ

Macroscopic picture

Let us consider a toroidal device with no toroidal current plasma
current, i.e. a stellarator, in which the necessary rotational
transform is produced only by external conductors.  Starting
with the radial pressure balance, with p⊥= 0 at the plasma edge,
and approximating the torus by a long cylinder, then

dp⊥
dr

= jθ Bφ
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integrating over the minor radius (r = 0 to ap) gives

p⊥ = −Bφ jθ r'( )dr'
r

ap
∫

and

p⊥ = 1

πap
2 2π

0

ap
∫ p⊥rdr = −

Bφ
πap

2 2π
0

ap
∫ rdr jθ r'( )

r

ap
∫ dr'

= −
Bφ

πap
2 π

0

ap
∫ r2 jθ r( )dr = −Bφ

S r( )
πap

2
0

ap
∫ jθ r( )dr

Then jse = ∫0
apS(r)/(πap2)jθ(r)dr is the effective surface current

density at the plasma edge as a consequence of the finite plasma
pressure.
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Paramagnetic and diamagnetic flux

Outside the plasma the toroidal field has the form Bφe =
Bφ0(R0/R), with Bφ0 the value at a fixed radius R0.  This
toroidal field, together with the poloidal field, takes part in
balancing the plasma pressure.

We need an equation relating fields to pressure.  Substituting
∇ × B = µ0 j into ∇p = j× B yields (using

B × ∇ × B( ) = ∇B2

2
− B •∇( )B)

∇ p + B2

2µ0

 

 
 
 

 

 
 
 = B • ∇( ) B

µ0

For a straight axially symmetric system (∂/∂z = 0) we obtain

∂
∂r

p +
Bz

2 + Bθ
2

2µ0

 

 

 
 

 

 

 
 = −

Bθ
2

rµ0
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Multiplying each side by r2, letting u = r2, du = 2rdr, dv =
∂/∂r(.), v = (..), we obtain by integrating by parts (∫udv = uv -
∫vdu)

r2 p +
Bz

2 + Bθ
2

2µ0

 

 

 
 

 

 

 
 

0

a

− p +
Bz

2 + Bθ
2

2µ0

 

 

 
 

 

 

 
 

0

a
∫ 2rdr = −

Bθ
2

µ00

a
∫ rdr

i.e.,

p +
Bz

2 + Bθ
2

2µ0

 

 

 
 

 

 

 
 

r = a

= 1

πa2 p + Bz
2

2µ0

 

 
 
 

 

 
 
 

0

a
∫ 2πrdr

That is, ignoring curvature and equating Bz with Bφ, the
pressure balance constraint is

2µ0 p = B
θa
2 + B

φe
2 − Bφ

2

where Bφ is the toroidal field inside the plasma, Bφe is the
toroidal field outside the plasma, and <..> means an average over
the plasma radius.
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In a tokamak Bφe ~ <Bφ>, so that

Bφe
2 − Bφ

2 ≈ 2Bφe Bφe − Bφ =
2BφeδΦ

πap
2

where

δΦ = πap
2 Bφe − Bφ

Then

βI = 1 +
8πBφeδΦ

µ0
2 I p

2

Paramagnetic:  δΦ p = −
µ0

2 I p
2

8πBφe

Diamagnetic: δΦd = −δΦ pβI

In a torus curvature must be accounted for, corrections with
coefficients (a/R) appear.  For  βI << R/a these corrections are
small.   For non circular cross sections the generalized pressure
moments show that βI = s1 + 8πBφeδΦ/(µ0Ip)2

βI > 0 means dBφ2/dr > 0, and βI < 0 means dBφ2/dr < 0.
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DIAMAGNETIC MEASUREMENT

δΦ ~ 1 mWb, compared to typical vacuum flux Φv = 1 Wb
enclosed by same loop.  Therefore measurements to better than 1
part in 104 to get 10% accuracy in values of βI.

Toroidal Field Coil
Vessel

loop

Compensating
coil

Figure 5a. Diamagnetic loop 
and compensating coil

Figure 5b. Two concentric diamagnetic loops

loop 1
loop 2Diamagnetic

plasma

Two toroidal flux loops, at different minor radii.  The two
concentric loops have radii b1 and b2, and Rl is the major radius
of the loops.  Then, with Bφe = Bφ0Rl/R,
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Φ(bi ) = 2πRlBφ0 Rl − Rl
2 − bi

2( )
1
2

 

 

 
 
 

 

 

 
 
 

+ δΦ

  

δΦ = Φ(b1) − k Φ(b2) − Φ(b1)( );

k = b1
2

b2
2 − b1

2

R
l
2 − b1

2 + R
l
2 − b2

2

Rl + R
l
2 + b1

2

diamagnetic loop

compensating coil

 

_

plasma

Ω

CΩi i

C

integrator gate

balance resistor

•
•
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FAST SURFACE RECONSTRUCTION

Contour 
l

τ

n

Figure 6. Boundary regions

region 3
Sφcoils

region 1

S plasmaφp

vacuumφS
region 2

To find plasma boundary we must know ψ(R,Z) in region 2

a) ∂ψ/∂n (i.e. Bτ) and either ∂ψ/∂τ (i.e. Bn) or ψ on part of l
(spec. ∂ψ/∂τ is equivalent to spec. ψ to within an unimportant
constant after integration).  Cauchy condition.

b)  currents in region 3, and either ∂ψ/∂n, ∂ψ/∂τ or ψ on l.

Usually use an apparently over determined problem, e.g. all
currents, ∂ψ/∂n and ∂ψ/∂τ on l.  In fact this is not so because we
only have the fields at discrete points, and the boundary
conditions are applied in a least squares sense.

Various representations for plasma current (hence ψplasma) have
been used.  Generally the coefficients in an expansion are altered
numerically to provide a minimum "chi squared" between some
measured and computed fields or fluxes.
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EXAMPLE OF FAST RECONSTRUCTION

A fast reconstruction (filaments).

A full reconstruction (equilibrium).
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MIRNOV OSCILLATIONS

resonance 1

resonance 2

q =
m1
n1

m1
n1

q = m 2
n 2

w2

w1

ws

Magnetic islands play a role in determining transport.  Their
spatial structure is approximately of the form exp(i(mθ+nφ)), and
they are located at surfaces where q = m/n.
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In terms of the Fourier coefficients of the radial component of
perturbing field br,mn at the resonant surface rmn (where q =
m/m), the island half width w is given by:

wi = 2
4q2 brmn R

mBφ
∂q

∂r

Mirnov first studied them with bθ loops, measuring ∂bθ/∂t outside
the plasma.
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∂bθ/∂t and polar plots of bθ(θ) during the current rise.
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Because the coils are outside the plasma they do not measure the
field strength at the integer q surface.  To extrapolate the fields
(measured at the plasma edge) inwards to the singular surface to
allow the island width to be derived we can represent the
fluctuations as being caused by current filaments aligned along
the field lines.

Complications:

1) Vacuum vessels

2) Toroidal geometry

a) jmn produces stronger field at inner equator,

b) perturbation is displaced because of 
Shafranov shift

c) the pitch of the field lines is no longer 
constant.  Replace θ by θ*:

θ* = φ
qMHD

= θ − a

Rg
βI + li

2
+1

 
  

 
  sin θ( )

p 3.47



plasma sensors chapter 3 August 3, 1997

POLOIDAL MODE STRUCTURE

Fourier transform in θ* to obtain the amplitude of each
component cos(mθ*+nφ-ωmnt).

This has been done both computationally, and using analog
multiplexing.

It is important to use the toroidal (θ*) expressions, otherwise
incorrect m values are inferred.

Another technique is to look in the frequency domain .  With coils
placed both poloidally and toroidally around the plasma, the
relationship between the signal phases identifies m and n
without the amplitudes being known.  In the frequency
domain we can reject noise, and other modes at frequencies other
than ωmn.  Again the toroidal expressions must be used.

p 3.48



plasma sensors chapter 3 August 3, 1997

INTERNAL PLASMA MEASUREMENTS

So far we have been concerned with
measurements of fields taken outside the
plasma.  In comparatively low temperature
plasmas (say Te < 50 to 100 eV), we can design
pickup coils to make internal measurements.
There is always the worry that the insertion of
such a coil changes the very plasma
characteristics we would like to determine.  This
fear is usually allayed by monitoring certain
characteristic plasma features (sawtooth activity,
Mirnov activity, loop voltage) to make sure they
do not change significantly during probe
insertion.  Figures  show a possible coil set up
which might be used.  The coil itself must be
protected from the plasma, typically by a
stainless steel case, possibly surrounded by a
carbon shield.  The geometry of the surrounding
materials must be carefully chosen if we are
looking at high frequencies so as not to cut off
the very signals we want to measure.
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Equilibrium

We first discuss the equilibrium.  From the basic field
measurements themselves we can, assuming circular straight
geometry, reconstruct the current from the equations

jφ = 1

µ0r

d

dr
rBθ( )

jθ = − 1

µ0

d

dr
Bφ( )

i.e. to obtain jφ(r) we only need the radial dependence of Bθ.
Unfortunately we have to contend with non circularity and
toroidicity.  One technique which has been applied is illustrated
by the results shown in Figure where small pick-up coils were
used to measure the poloidal magnetic field at current peak in a
small tokamak (TNT in Japan).
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Equilibrium poloidal fields measured in TNT

The radial component BR(R0,z) is measured along a vertical
line R = R0, and the vertical component Bz(R,0) is measured
along a line z = 0.  The results are fitted to expressions of the
form

BR R0, z( ) = an
n = 0

N
∑ zn

Bz R,0( ) = bnRn

n = 0

N
∑
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The magnetic axis is found where from the zero crossing of the
resulting polynomials.  The flux function is found by
integration:

ψ R0, z( ) = −R0 anzn( )dz
n = 0

N
∑∫ + const

ψ R ,0( ) = bnRn +1( )dR
n = 0

N
∑∫ + const

The current density is then obtained as

µ0 j = ∂BR
∂z

− ∂Bz
∂R

The constants (giving ∂BR/∂z at z = 0 and ∂Bz/∂R at R = R0)
must be determined by making some assumptions concerning
the plasma shape, say that it is mostly elliptic.  Some examples
of the results of this analysis, where N = 5, are shown in Figure
for the fluxes and Figure for the current density.
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Fl
ux surfaces reconstructed for TNT.

Current density profiles for TNT
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Internal electric field

Internal magnetic measurements are also used to determine the
internal electric field.  From Faraday's law

E •dl = − d

dtl
∫ B •ndS

S
∫

 

 
 
 

 

 
 
 

we have, applying this to the geometry of Figure

Eφ r( ) = Eφ a( ) − d

dtr

a
∫ Bθ dr

E

Eφ

φ

-

-Eθ

The geometry used to describe the
measurements of internal electric field
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The internal electric field prior to a disruption
(from Hutchinson)

Figure shows some spatial profiles of Eφ from this analysis just
before and at a disruption.  Although the edge electric field goes
negative (the negative voltage spike) the internal electric field
strongly positive.  In principle, having measured j and E we
could derive the local conductivity.
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Mirnov Oscillations

The same probes used to measure the internal equilibrium
properties can be used to look at the Mirnov fluctuations (as
long as the coils have a sufficiently high frequency response).
Data from such experiments has isolated the radial dependence
of the fluctuating br, bθ fields, as shown in Figure   It agrees
with our discussion in previous section, namely b ∝ (rmn/r)m+1
for r > rmn without a vacuum vessel.  In the presence of a
conducting vessel at r = rw we must account for the image
currents which flow, so for example we would expect

The measured radial dependence of the fluctuating poloidal
fields (Mirnov oscillations) from and m = 2 tearing mode
(measurements in TOSCA).
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